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Weak non-Gaussian approximation
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A superposition of Gaussian functionals is considered as a trial functional for the Bogoliubov inequali-
ty. The direct optimization of the Bogoliubov inequality generates a non-Gaussian approximation. This
function may be strongly non-Gaussian but the kernel is the same as the usual one, up to a multiplicative

constant.

PACS number(s): 05.50.+q, 05.90. +m

One of the limitations of the variational principle in
field theory or statistical mechanics is that the only func-
tionals w[¢] for which an average can be computed ex-
actly is the Gaussian

ol¢]=exp |~ [dx dy $(x)K (x,y)$(y)

+ [dx T (x)p(x) |, (1)

with K some positive definite operator [1]. This is some-
thing of a limitation and means that typically, a function-
al such as (1) is chosen as the trial state. A superposition
of Gaussians can be considered as a straightforward non-
Gaussian generalization. Some such special cases of
weakly non-Gaussian functionals have been studied, and
it may be shown that they correspond to exactly solvable
models [2-5]. Such models have been chosen somewhat
arbitrarily, in attempts to describe some of the fluctua-
tions of the Landau-Ginzburg-Wilson Hamiltonian. Here
we shall show that it is possible to refine such an ap-
proach, by optimizing the distribution over a large varia-
tional space. We define the superposition as

fd”¢ exp[ —F(¢-K@)+J-¢]

(21),)N/2 + o N—1
= dtt

VdetK fO

XQu(t VI K™ T exp[ —F(¢2)], 2

where $ is an N-dimensional vector, K is the N XN-
matrix,

Iy —2),(x)
SN-272 ’

1

Qy(x) (3)
and Iy is the modified Bessel function of order N [6].
[Some integrals similar to (2) may be found in [7].]

The Eq. (2) is a discretized generalization of the well-
known case, F(t)=t. We shall now attempt to determine
the F by a variational procedure. Let us consider the Bo-
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goliubov inequality

—In [d¥exp(—H[$))Sf=f,+fr+ 5, (4)
fi=—In[dYexp(—H[$]) , (5)
f2:<H>T’ f3=_<HT>T» (6)
where
dN (—H %)
(- >TE f ¢ €Xp T[¢] o

Jd"¢exp(—H[$])

Consider first the more straightforward case of a sym-
metric phase, so that the trial Hamiltonian may be writ-
ten Hy[¢]=F(¢$-Ko).

We then find, by variation,

F(y)=2N=27r

N e
> ]H(aﬂjzo)ﬂN(\/J-K T, (8)

where we use the expression

1 ® tk
2(N——2)/2 é
k=0 —12\’ tk

QN(Vi)=

9

22k

As an example we may choose the Hamiltonian

L N
H[¢]=¢Bs+A 3 ¢ . (10)
j=1
Then the optimal F yields
1=+ 1r | B l5ks
Hy($)= Tr | |#Ké
A3 S(KTZFKEE. 4D
N(N+2) & H

Equation (8) is encouragingly simple. Now we perform
the minimization of Eq. (4) with respect to K and F
simultaneously.

For a simple example we chose the Landau-Ginzburg
model in three-dimensional Euclidean space,

H:%[V¢(x)]2+%¢2(x)+2—z¢4(x), b>0. (12)
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The trial Hamiltonian
Hy($)=F | [ dxdyl(x)~1G " (xy)4(y)~ ]
(13)

permits us to consider both symmetric and broken sym-
metry phases. It depends on ¢, the kernel G !, and the
function F. Note that @ is just the average value of the
field: @=<(¢) .

Let us consider problem (12) on a lattice of N =M3
sites with a mesh size A~! and periodic boundary
conditions. Recall that, on a Fourier lattice,
(kllA|k2)=—4A28klk2§kl, £ =33 sin’(wk; /M), and

k;j=1,...,M[8]. And we denote g, =(k,|Glk,). Then
fi=—13 Ingg+In |[TN/2) | _ Ny (14)
K Oy 2
2A° Onpois 3 Opn+1 | a

+ __ N7l & v 2
f2= N On Egk 8kt 2 Onn |2 %gk

A Otz a b

b 2_}_‘ 2_+__ 4 ,
8N (N +2) Oy, [%g“] 29 T ?
(15)
=1 teo  (N-2)22 _

fs==%. J, Tdrr F(r)exp[—F(1)],  (16)
0,[Fl= f0+wd7'7'”ﬂexp[—F(7')] . (17)

Note that, if F(7)=
tion I'(n).
Minimization of f with respect to gy, agk f =0, results

7, the ®, becomes the gamma func-

in
N2 Oy, 1
4A° Oy pppy E -+’

8k~ (18)
where the parameter u? is to be defined by minimization
of f. Substitution of (18) into f = f, + f, + f; and minim-
ization of f with respect to F, 8 f /8F (1)=0, yields

F(r)=qr+pr*, p>0. (19)

Notice that in the standard Gaussian case p =0.
Substitution of (19) into f and the minimization of f
with respect to <p2 yields

b z?
2)=1V+ — T
F=Vit o eV = 4
b TN+4YNV
METYYC Y%,
_ﬂZTNH _ N(N+2) Yn+4
27 Yy 8 Yy
c N Y e N (240 (20)
27 Yy N 7N |’
where @*= —6(a /b)—3V /(4A?) if 6(a /b)+3/4A%V <0,

and @ =0 otherwise. Here the following notations have

been introduced:

ZEVq , 1)
v= , 22)
%5(1{)-&-#
=3 |—E2%) k) +42 (23)
V=2 g4 ilER+ A

The symbol Yy stands for the parabolic cylinder function

(%]

ED-(Nfz)/z(Z) . (24)

Thus, the minimization of f(u,z) need be carried out
only with respect to two parameters, u and z. The stan-
dard Gaussian approximation implies z = + o and

b b
(w, + o)=LV + -2V + yio =
Fu A T ar T 24
5
+%ln fri\N (25)

where ¢ is defined above.
The more general result that we have presented, (20),
can be computed numerically using Darwin’s expansion

of Ul(a,z) for a positive and (4a+z?) large [9]. We ap-
plied this expansion including the polynomials
dsy,dg,dg, ..., up to d,, [9,10]. The standard Gaussian

approximation (25) allows us to check the more general
result with the same value of y and for large z. Such nu-
merical calculations show that for this model the correc-
tions to the standard Gaussian approximation are very
small, but are instructive in that they illustrate the in-
teresting behavior of the ‘“non-Gaussian” parameter z.
We note that this parameter becomes negative in the
symmetric phase. In Fig. 1 we have plotted z vs a for
A=1, N=1000, and b =6 around the critical point
a =~ —85. The correction to the free energy compared to
the standard Gaussian approximation is small, of order
3X 10~ % The parameter z decreases gradually from =62
at a=—100 to =~44 at the critical point, where it

45.0

44.4.
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FIG. 1. Non-Gaussian parameter z is plotted against a. A re-
gion of z is cut to facilitate the picture.
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changes sign and becomes negative: ~ —32 in the sym-
metric phase.

In conclusion, we have considered the trial distribution
(2) [or (13)] of a superposition of Gaussians, and found
that optimization of the Bogoliubov inequality generates
a weak non-Gaussian approximation with weight func-
tion in (8) and (19). This function can be strongly non-
Gaussian [as for example, with ¢ <O in (19)] but in the
sample calculation the kernel is not changed, up to a mul-
tiplicative constant [see (18)].

A similar analysis could improve the Gaussian effective
potential approach in quantum field theory [11] and the

corresponding calculations on a lattice [12]. It will be of
some interest to consider more general superpositions of
Gaussians with different kernels and a broader space of
distributions. Perhaps, there lies the resolution to some
problems that have plagued attempts to improve simple
approximations in statistical mechanics and field theory
of classical and quantum systems.

The authors are grateful to Professor V. B. Priezzhev
of Dubna for pointing out Ref. [3] prior to the com-
pletion of this work.
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